Determine if the following functions are exponential functions. Explain your answer.

 1) $y = 2^x$ Yes
 2) $y = x^2$ No
 3) $y = 3 \cdot \left(\frac{1}{2}\right)^x$ Yes

 4) $y = (1.05)^x$ Yes
 5) $y = 3 \cdot 9^{-x}$ Yes
 6) $y = 0.95^x$ Yes

 7) $y = 0.5 \cdot x^{1/2}$ No
 8) $y = 3x^5 + 3x$ No
 9) $y = \pi^{x+1}$ Yes

Tell whether the exponential function shows growth or decay. Explain your answer.

10) $y = 4^{x}$ Growth 11) $y = \left(\frac{1}{4}\right)^{x}$ Decay 12) $y = (0.5)^{x}$ Decay 13) $y = (1.2)^{x}$ Growth 14) $y = 2 \cdot \left(\frac{3}{4}\right)^{x}$ Decay 15) $y = 3 \cdot \left(\frac{5}{2}\right)^{x}$ Growth 16) $y = 4^{-x}$ Decay 17) $y = \left(\frac{1}{3}\right)^{-x}$ Growth 18) $y = 3 \cdot 2^{x-2} + 2$ Growth

Use a table of values to graph the exponential functions.

19)

$f(x) = 2^x$	
x	f(x)
-3	1/8
-2	1/4
-1	1/2
0	1
1	2
2	4
3	8

20)

$f(x) = \left(\frac{1}{3}\right)^x$	
x	f(x)
-2	9
-1	3
0	1
1	1/3
2	1/9
3	1/27

$f(x) = -2 \cdot \left(2\right)^{-x}$	
x	f(x)
-2	-8
-1	-4
0	-2
1	-1
2	-1/2
3	-1/4

21)

Model the following problems as an exponential function of the form: $A(t) = a(1 \pm r)^{t}$

- 22) A certain car depreciates about 15% each year.
 - a) Write a function to model the depreciation value for a car that was originally worth \$20,000.

$$A(t) = 20,000 (0.85)^t$$

b) Suppose the car was originally worth \$20,000 in 2005. What is the first year in which the value of the car will be worth less than half of the original value?

2010

- 23) Rose invests \$5000 in an account that pays 6.25% interest per year.
 - a) Write a function that models the growth in value of her investment.

$$A(t) = 5,000 (1.625)^{t}$$

b) After how many years will her investment be worth \$10,000?

≈11.4 Years

24) A city population, which was initially 15,000 has been dropping by 3% a year.

a) Write an exponential function that models the drop in population.

$$A(t) = 15,000 (0.97)^{t}$$

b) When will the population drop below 8000?

≈ 20.6 Years

25) Radon-222 is a gas that escapes from rocks and soil. It can accumulate in buildings and can be dangerous for people who breathe it. Radon-222 decays to polonium and eventually to lead.

Radon-222 Decay

a) Using the graph above, find the percent decrease in the amount of radon-222 each day.

17%

b) Write an exponential decay function for the amount of 500 mg sample of radon-222 remaining after t days.

$$A(t) = 500(0.83)^{t}$$

c) How much of the radon-222 sample would remain after 14 days?

36.8 mg